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Motivation, Big goal
Non-perturbative calculation of QCD is important

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

QCD in 3 + 1 dimension

• This  describes…


• inside of hadrons (bound state of quarks), mass of them


• scattering of gluons, quarks


• Equation of state of neutron stars, Heavy ion collisions, 
etc


• Non-perturbative effects are essential. How can we deal 
with?


• Confinement (閉じ込め)


• Chiral symmetry breaking (カイラル対称性の自発的破れ)

12 Rajan Gupta
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Fig. 3. The Feynman diagram for the semi-leptonic decay D− → K0e−νe. The QCD
corrections are illustrated by the various gluons being exchanged between the initial and
final hadrons. The leptonic vertex can be calculated reliably using perturbation theory,
whereas the hadronic vertex requires non-perturbative methods.

The second area in which perturbative estimates are not reliable is in
the calculation of the matrix elements occurring in the weak decays of
hadrons. The reason is that the non-perturbative QCD corrections to the
basic weak process can be large due to the exchange of soft gluons between
the initial and final states. This is illustrated in Fig. 3 for the case of
the semi-leptonic decay D → Klν. In this case the matrix element of
the weak interactions Hamiltonian between the initial D meson and final
kaon receives large corrections from QCD which cannot be estimated using
PQCD.

The result of the experiment is a number, i.e. the decay rate. To check
whether the Standard Model prediction is in agreement with this number
theorists must derive an analytical expression for the same process. This
expression, in general, consists of a product of three parts: a combination
of the parameters in the SM , matrix elements (ME) of the interaction
Hamiltonian between the initial and final states, and kinematic factors.
(This is the well-known Fermi’s golden rule.) Schematically one can write
this “master” equation as follows.

Expt.# =
(
SM parameters

)(
matrix elements

)(
kinematic factors

)
. (3.2)

Thus, for each such experimental number one gets a constraint on one
particular combination of the SM parameters provided the ME are known.

Z = ∫ 𝒟A𝒟ψ̄𝒟ψeiS Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

S = ∫ d4x[ −
1
4

tr FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]
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Motivation, Big goal
LQCD = Non-perturbative calculation of QCD

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

• Standard approach: Lattice QCD with Imaginary time and Monte-Carlo


• LQCD =  QCD + cutoff + irrelevant ops. = “Statistical mechanics”


• Mathematically well-defined quantum field theory


• Quantitative results are available = Systematic errors are controlled

QCD in 3 + 1 dimension

S = ∫ d4x[ −
1
4

tr FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]
Z = ∫ 𝒟A𝒟ψ̄𝒟ψeiS Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

S = ∫ d4x[ +
1
4

tr FμνFμν + ψ̄(∂/ − gA/ − m)ψ]
Z = ∫ 𝒟A𝒟ψ̄𝒟ψe−S

QCD in Euclidean 4 dimension

← This can be regarded 
     as a statistical system
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Motivation, Big goal
Sign problem prevents using Monte-Carlo

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

• Monte-Carlo is very powerful method to evaluate expectation values for 
“statistical system”, like lattice QCD in imaginary time

Uc ← P(U) =
1
Z

e−S[U]⟨O[U]⟩ =
1

Nconf

Nconf

∑
c

O[Uc] + 𝒪(
1

Nconf
) ∈ ℝ+

• However, if we have, real time, finite theta, finite baryon density case, we cannot we use 
Monte-Carlo technique because e^{-S} becomes complex. This is no more probability.


• Hamiltonian formalism does not have such problem! But it requires huge memory to 
store quantum states, which cannot realized even on supercomputer.


• Quantum states should not be realized on classical computer but on quantum 
computer (Feynman 1982)

Great successes!

Sign problem

arXiv:0906.3599
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Short summary
Sign problem prevent to use conventional method

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

• QCD describes perturbative and non-perturbative phenomena


• Lattice QCD with imaginary time is non-perturbative and quantitive method, 
which is evaluated by Monte-Carlo


• Sign problem, which is occurred in real time/finite theta/finite baryon density 
cace, prevents us to use the Monte-Carlo


• Hamiltonian formalism is one solution but we cannot construct the Hilbert 
space because of the dimensionality


• Quantum simulation/computer  is natural realization the Hamiltonian 
formalism

Question?
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Quantum computer?
Towards beyond classical computers

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

| ↑ ⟩, | ↓ ⟩

Lattice gauge theory with quantum computer 
could be a future “common tool”

Quantum 
computer

Classical

Unit Qubit Bit

Operation Unitary 
operations

Logic gates

Represent
ation of 0/1

Spin   Voltage 
High, low

Glowing 
law

Neven’s law

double exp(?)

Moor’s law

exp

1946

https://uk.pcmag.com/forward-thinking/117979/gartners-top-10-strategic-technology-trends

IBM Q |0⟩, |1⟩0,1

Data 
→Machine→Data

State 
→Machine→State

https://uk.pcmag.com/forward-thinking/117979/gartners-top-10-strategic-technology-trends
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Quantum computer?
For physicists :  Circuit ~ time evolution of quantum spins

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Transverse Ising model on 3 sites (Open boundary)
Toy example of usage of quantum computer

≡ UZZ(ϵ)

Time evolution for infinitesimal (real) time ε:
e−iHϵ = e−i(−Z0Z1−Z1Z2−hX0−hX1−hX2)ϵ

≈ e−i(−Z0Z1−Z1Z2)ϵe−i(−hX0−hX1−hX2)ϵ + O(ϵ2)

|0⟩

≡ UX(ϵ)

H = − ∑
<j,k>

ZjZk − h∑
j

Xj = − Z0Z1 − Z1Z2 − hX0 − hX1 − hX2

|0⟩
|0⟩

e−iHt |0⟩ ⊗ |0⟩ ⊗ |0⟩ = UZZ(ϵ) UX(ϵ) UZZ(ϵ) UX(ϵ) …

(Suzuki-Trotter expansion)

: Pauli matrix of z on site jZj

: Pauli matrix of x on site jXj

We can make these boxes by circuits (ask me later)

In this way, we can (re)produce, Hamiltonian time evolution using a quantum circuit.

Here we can evaluate the systematic error from the expansion and

reduce it by using higher order decomposition (leapfrog etc)

Quantum computer actually can realize any unitary transformation (skipping proof)

: size of external fieldh
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Quantum computer?
Quantum computer is under developing

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

= The number of qubits are not many.

= We cannot make quantum circuit deeper.

Quantum computer is theoretically universal, namely it can mimic any

unitary transformation, but practically …

Gate operations are inaccurate. 

Quantum states are fragile. 

UZZ(ϵ) UX(ϵ) up to 53 (world record)

|Ψ⟩

|0⟩ { |0⟩ (if Ψ = 0)
|1⟩ (if Ψ = 1)

|Ψ⟩

e.g.) Control-not (CNOT) gate If ● side is 0, gate does nothing on the target ⊕ 

If ● side is 1, gate flips the target ⊕ side.

|0 ⊕ Ψ⟩ =

controller

target

| actual⟨0 ⊕ Ψ |0 ⊕ Ψ⟩ideal | ≈ 0.9

Operations are sometimes wrongly performed.
In order to study machine independent parts, we use a simulator instead of real one.

(machine dependent, 1903.10963)
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Quantum computer?
IBM Q is available and free

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

From Jupyter/python From Browser to real machine

Several frameworks are available;

    Qiskit : de facto standard (IBM)

    Qulacs : Fastest simulator (QunaSys, Japan) 

    Blueqat : I think this is easiest (MDR, Japan)

etc…
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Short summary
Quantum computer?

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

• Quantum computer is developing technology. Current one is noisy so far


• Once hamiltonian is constructed, we can perform time evolution using 
quantum circuit in principle


• Comment1: We use simulator but our technology can be used in future 
machines with error-correction. Time resolves this problem.


• Comment2: Simulation of quantum computer by classical machine is 
generally exponentially hard. To calculate large problem, we need real 
device.

Question?
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Schwinger model
＝2D QED: Solvable at m=0, similar to QCD in 4D.

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Schwinger model = QED in 1+1 dimension

Similarities to QCD in 3+1

• Confinement


• Chiral symmetry breaking (different mechanism)


• Theta term is essential for CP violation and causes 
the sign problem but in this talk we omit this one 
(please refer our paper for θ≠0)


• Vacuum decay by external electric field (Schwinger 
effect)

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ +
gθ
4π

ϵμνFμν]
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Schwinger model with QC

E(x)

x+ -

Schwinger model = QED in 1+1 dimension

In 1+1 D, Coulomb potential is linear in x,  
Electric field of a point particle is constant in x

[Y. Hosotani,…]

Chiral condensate is non-zero even for massless fermion, 

analytical result for massless case

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

Schwinger model
＝2D QED: Solvable at m=0, similar to QCD in 4D.

⟨ψψ⟩ = −
eγg
π3/2

= − g0.16⋯

1)

2)

Confinement

Chiral symmetry 
breaking
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Hamiltonian of Schwinger model

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Schwinger model = QED in 1+1 dimension

• Strategy


1. Derive Hamiltonian with gauge fixing


2. Rewrite gauge field to fermions using Gauss’ law


3. Use Jordan-Wigner transformation → Spin system

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

＝2D QED: Solvable at m=0, similar to QCD in 4D.
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Hamiltonian of Schwinger model

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Schwinger model = QED in 1+1 dimension

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

What I want explain in this section

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

e−iHϵ ≈ e−iHZϵe−iHXXϵe−iHYYϵe−iHZZϵ

Rz(θ) = exp(i
1
2

θσz)

Rz(2α)

UZjZk
(α) = eαiZjZk =

j

k

• Strategy(1gauge fix, 2Gauss’ law, 3Jordan-Wigner trf)
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Hamiltonian of Schwinger model

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Schwinger model = QED in 1+1 dimension

H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]
A0 = 0

Π(x) =
∂ℒ

∂ ·A1(x)
= ·A(x) = E(x)

∂xE = gψ̄γ0ψ (Gauss’ law constraint){

S = ∫ d2x[ −
1
4

FμνFμν + ψ̄(i∂/ − gA/ − m)ψ]

＝2D QED: Solvable at m=0, similar to QCD in 4D.

This constrains time evolution to be gauge invariant

(detail)
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Lattice Hamiltonian formalism
Hamiltonian on a discrete space

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Schwinger model in continuum

−agA1(x) → ϕn

−
1
g

Π(x) → Ln

Ln − Ln−1 = χ† χn −
1
2 (1 − (−1)n)

H = −
i

2a

N−1

∑
n=1

[χ†
n+1e

−iϕnχn − χ†
neiϕnχn+1] + m

N

∑
n=1

(−1)n χ†
n χn +

g2a
2

N−1

∑
n=1

L2
n

∂xE = gψ̄γ0ψGauss’ law

Gauss’ law

Schwinger model on the lattice (staggered fermion)

upper componentof ψ → χeven−site

lower componentof ψ → χodd−site

H = ∫ dx[ − iψγ1(∂1 + igA1)ψ + mψ ψ +
1
2

Π2]

(detail)



H = −
i

2a

N−1

∑
n=1

[χ†
n+1e

−iϕnχn − χ†
neiϕnχn+1] + m

N

∑
n=1

(−1)n χ†
n χn +

g2a
2

N−1

∑
n=1

L2
n
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Lattice Schwinger model = spin system
Gauge trf, open bc, Gauss law -> pure fermionic system

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

χn → Un χn

L0 = ϵ0 ∈ ℝ (open B.C.)

Un =
n−1

∏
j=1

e−iϕj

e−iϕn−1 → Un−1e−iϕn−1U†
n

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Ln − Ln−1 = χ† χn −
1
2 (1 − (−1)n)Gauss’ law

Schwinger model on the lattice (staggered fermion)

{ remnant gauge transformation

Schwinger model on the lattice (staggered fermion, OBC)

, and insert “Gauss’ law”

c

(detail)
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Lattice Schwinger model
We requires anticommutations to fermions

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC)

System is quantized by assuming the canonical anti-commutation relation

{χ†
j , χk} = iδjk

On the  other hand, Pauli matrices satisfy anti-commutation as well

{σμ, σν} = 2δμν1
Quantum spin-chain case, each site has Pauli matrix, but they are “commute”.
We can absorb difference of statistical property using Jordan Wigner transformation

χn =
Xn − iYn

2 ∏
j<n

(iZj)Jordan-Wigner transformation:
: Pauli matrix of z on site jZj

: Pauli matrix of x on site jXj
: Pauli matrix of y on site jYj

μ, ν = 1,2,3

j, k = site index

We can rewrite the Hamiltonian in terms of spin-chain
This reproduce correct Fock space.

This guarantees the statistical property

(detail)
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Lattice Schwinger model = spin system
Jordan-Wigner transformation: Fermions ~ Spins

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

χn =
Xn − iYn

2 ∏
j<n

(iZj)

χ†
n =

Xn + iYn

2 ∏
j<n

(−iZj)

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Jordan-Wigner transformation

[Y. Hosotani 9707129]

H = −
i

2a ∑
n

[χ†
n+1χn − χ†

n χn+1] + m∑
n

(−1)n χ†
n χn +

g2a
2 ∑

n [
n

∑
j

(χ†
j χj −

1 − (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC)

{
Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

: Pauli matrix of z on site jZj

: Pauli matrix of x on site jXj

: Pauli matrix of y on site jYj

(detail)
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Jordan-Wigner transformation: Fermions ~ Spins

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Evolution by each term can be represented by gates  (with Suzuki-Trotter expansion):

e.g.)

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

Lattice Schwinger model = spin system

Rz(θ) = exp(i
1
2

θσz)

Rz(2α)

UZjZk
(α) = eαiZjZk =

j

k

UZ0Z1
(α) | ↓ ⟩0 | ↑ ⟩1 = eαiZjZk | ↓ ⟩0 | ↑ ⟩1 = e−α | ↓ ⟩0 | ↑ ⟩1

|0⟩circuit = | ↑ ⟩spin

|1⟩circuit = | ↓ ⟩spin

UZ0Z1
(α) | ↓ ⟩0 | ↓ ⟩1 = eαiZjZk | ↓ ⟩0 | ↓ ⟩1 = e+α | ↓ ⟩0 | ↓ ⟩1

UZ0Z1
(α) | ↑ ⟩0 | ↓ ⟩1 = eαiZjZk | ↑ ⟩0 | ↓ ⟩1 = e−α | ↑ ⟩0 | ↓ ⟩1

UZ0Z1
(α) | ↑ ⟩0 | ↑ ⟩1 = eαiZjZk | ↑ ⟩0 | ↑ ⟩1 = e+α | ↑ ⟩0 | ↑ ⟩1

Skipping detailed calculation but, this realizes correct unitary evolution

(detail)
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Jordan-Wigner transformation: Fermions ~ Spins

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

e−iHt |0⟩ ⊗ |1⟩ ⊗ ⋯ ⊗ |0⟩ ⊗ |1⟩
Then, we can evaluate,

To calculate chiral condensate, we have to prepare the vacuum for full Hamiltonian.

H =
1

4a ∑
n

[XnXn+1 + YnYn+1] +
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [
n

∑
j=1

(
Zj + (−1) j

2 ) + ϵ0]
2

Schwinger model on the lattice (staggered fermion, OBC, Spin rep.)

(trivial ground state for m, g->∞) 

Lattice Schwinger model = spin system

|Ω⟩exact ≠ |0⟩ ⊗ |1⟩ ⊗ ⋯ ⊗ |0⟩ ⊗ |1⟩

e.g.)
Rz(θ) = exp(i

1
2

θσz)

Rz(2α)

UZjZk
(α) = eαiZjZk =

j

k

Next section, we discuss state preparation.

Evolution by each term can be represented by gates  (with Suzuki-Trotter expansion):
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Short summary
Lattice Schwinger model = spin system

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

• Schwinger model, 1+1 dimensional QED, is a toy model for QCD in 3+1 
dim.


• Lattice Schwinger model + open boundary  = Spin model


• We can realize time evolution of lattice Schwinger model using circuit.


• We want to reproduce analytic value for the chiral condensate at m=0 in the 
continuum, 

                                       

to study usability of quantum computer/circuit

⟨ψ ψ⟩ = −
eγg
π3/2

= − g0.16⋯

Question?
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Adiabatic preparation of vacuum
To calculate VEV,  vacuum is needed

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Hint =
1

4a ∑
n

[XnXn+1 + YnYn+1]

H0 =
m
2 ∑

n

(−1)nZn +
g2a
2 ∑

n [1
2

n

∑
j=1

(Zj + (−1) j)]
2

H(t) = H0 +
t
T

Hint

: This has a trivial vacuum

We can use adiabatic theorem!
0 < t < T

H0

Time

Spectrum

H0 + Hint

:   Kinetic term in original QFT

|Ω⟩exact = lim
T→∞

T̂e−i ∫T dtH(t) |Ω⟩trivial

(Following is slightly simplified from our paper, but essentially same)

　（Neel ordered)
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Adiabatic state preparation
We can control systematic error from adiabatic st. prep.

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Adiabatic time T >> 1/gap, it looks converge

Systematic error of adiabatic state preparation

State prep. Good Bad

Adiabatic
Systematic error is under 

control. It can be 
eliminated by extrapolation

Huge cost

(Depth is required)

Variational 
(commonly used in 
Quant. chemistry)

Economical

(Magically good quality)

Depends on ansatz, in 
principle

-100

We use→
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Short summary
Adiabatic state preparation is systematically controlled
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Schwinger model with QC

• To calculate vacuum expectation values, we need vacuum for full 
Hamiltonian


• Adiabatic state preparation is costly but sources of systematic errors are 
clear, safe to use.


• Note: Adiabatic state preparation becomes inefficient if the system 
approaches to gapless region (θ=π). In the paper, we use improved time 
evolution operator

Question?
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Results
Chiral condensate with certain limits 

Osaka U. seminar
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Schwinger model with QC

• We calculate chiral condensate for m =0,  m>0  in lattice Schwinger model


• We have taken limits,


1. Large volume limit (Nx->0)


2. Continuum limit (a->0)


• Limits for adiabatic state preparation are not taken yet but under control


• Step size for Trotter decomposition  (Left panel)


• Large adiabatic time lime  (Right panel)

We take step size as 0.1 and adiabatic time as 100

-100 -T
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Results: Large vol. & Cont. limit
Systematic errors from theory are under control

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

= 1/(2Lx)

w = 1/(2a)

Large volume limit via state pre. Continuum limit via state pre.

Error bar includes systematic 
and statistical error. 
Statistics = 106 shots

Error bar are asymptotic error 
for finite volume limit extrp.
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Results: Large vol. & Cont. limit
Systematic errors from theory are under control

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

⟨ψψ⟩ = − g0.160⋯

⟨ψψ⟩ = −
eγg
π3/2

= − g0.160⋯

Adiabatic preparation

Analytic value

So far so good!
V→∞, a→0

Results for massless Schwinger model are consistent with analytic value
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Results: Large vol. & Cont. limit
Systematic errors from theory are under control

Osaka U. seminar

Akio Tomiya

Schwinger model with QC

Massive case  and its time dependence (skipping all details)
For  massive  case, results via mass perturbation is known.

Result depends on θ as well as QCD

Our result for |m| < 1 reproduces mass perturbation as well as theta

dependence. Large mass regime, we observe deviation

Solid line = mass perturbation
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Towards on real machine
Real machine is noisy
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Schwinger model with QC

• We need to care the fidelity: “accuracy” of operation of gates on qubits.


• Each time step = 250(# of 1-qubit gates)+270(# of 2-qubit gates)


• The number of time steps = T / δt = 1000


• Each gate operation has error, we need improvement.


• Hardware side: Error correction, reliable qubits/operations


• Theory side: improvement of decomposition & annealing process, this is 
discussed in our paper


• Towards to realize QCD, we need


• Efficient higher dimensional version of “Jordan-Wigner” transf.


• Development of treatment for continuous gauge d.o.f.


• A number of (reliable) qubits


• Efficient way of state preparation with controlling error
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Summary
QFT calculation by Quantum computer
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Schwinger model with QC

• We are investigating chiral condensate in the Schwinger model


• Errors from limits (Large volume, continuum) are under control


• Adiabatic state preparation works well


• We reproduce results both of massless and massive case


• Future work: Other observables, time depending process, etc

Thanks!


